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Motivation

B.D.Dudson et.al, Plasma Phys. 
Control. Fusion, 50 (2008) 124012 

Filaments/blobs are synonymous with magnetically 
confined plasmas

They provide a strong component of intermittent, 
non-local transport into the SOL

They can play a dominant role in determining SOL 
width, first wall and divertor power loading and 

impurity transport   
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J.A.Boedo et.al, Phys. Plasmas, 10 
(2003) 1670 

Skewness of the PDF of 
density fluctuations is positive 
in the SOL

Blobs 

But negative towards the 
LCFS

Holes  



Motivation
Krasheninnikov (Phys.Lett.A, 2001) showed that blobs in a vacuum can 

propagate ballistically

Forces perpendicular to the field polarize the blob, leading to the formation of 

two counter rotating vortices    
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Motivation
Krasheninnikov (Phys.Lett.A, 2001) showed that blobs in a vacuum can 

propagate ballistically

Forces perpendicular to the field polarize the blob, leading to the formation of 

two counter rotating vortices    

Density

Potential

The blob can be thought of as an equivalent circuit

Radial velocity is determined by the path of least 

resistence  

D.A.D'Ippolito et.al, Phys. Plasmas, 18 (2011) 060501 
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2D Blobs/Holes

ALCATOR C-MOD

Inertially limited

Blobs extensively studied since Krasheninnikov, Phys Lett A, 2001

Show three main types of motion (see BOUT/examples/blob2D for implementation)
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2D Blobs/Holes
Blobs extensively studied since Krasheninnikov, Phys Lett A, 2001

Show three main types of motion (see BOUT/examples/blob2D for implementation)

ALCATOR C-MODALCATOR C-MOD

Coherent Motion



2D Blobs/Holes
Holes are proposed as a method of impurity transport in the edge

Are the dynamics of holes the same as blobs?

Blobs can propagate in vacuum but holes are defined by a background density

This gives the Initial current source in the blob circuit for blobs or holes

ALCATOR C-MOD



2D Blobs/Holes
Scaling with δn is linear for blobs but exponential for holes

ie a blob of 2 times background density corresponds to a hole of ½ times 
background density

ALCATOR C-MODALCATOR C-MOD

BlobsHoles

Linear

Logarithmic



2D Blobs/Holes
Scaling with δn is linear for blobs but exponential for holes

ie a blob of 2 times background density corresponds to a hole of ½ times 
background density

For inertially limited blobs/holes the Vorticity (or circuit) equation can be 
reduced to 
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2D Blobs/Holes
To investigate the impurity transport due to a hole, model impurities as a trace 

ion species

Requires that impurities do not affect quasineutrality

Impurities principally transported by background and polarization flows

Impurities become entrained in flow due to the hole motion
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3D SOL Filaments
3D filament motion is strongly affected by 

magnetic geometry
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3D SOL Filaments
3D filament motion is strongly affected by 

magnetic geometry

Curvature drives filament motion, magnetic 
shear and flux expansion suppress filament 
motion
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3D SOL Filaments
MAST SOL Fluxtube geometry 

implemented in BOUT++ 

Filaments exhibit striking 3D features



3D SOL Filaments
MAST SOL Fluxtube geometry 

implemented in BOUT++ 

Filaments exhibit striking 3D features

X-points negate sheath effects on the 
midplane filament



Interchange motion has a well defined symmetry

Symmetry Breaking

Density has even parity

Potential has odd parity

In 2D this symmetry remains 
unbroken
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In 3D parallel density gradients 
break interchange symmetry by 
providing another potential 
source



Interchange motion has a well defined symmetry

Symmetry Breaking

Symmetry broken as time progresses (ie 
Boltzmann response takes over)

In 2D this symmetry remains 
unbroken

Initially develops a fairly symmetric state (ie 
interchange mechanism initially driven)

In 3D parallel density gradients 
break interchange symmetry by 
providing another potential 
source



Cold filaments are subject to the interchange mechanism
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3D SOL Filaments
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Hot(ter) filaments are subject to the Boltzmann response
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Hot(ter) filaments are subject to the Boltzmann response
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Hot(ter) filaments are subject to the Boltzmann response
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Hot(ter) filaments are subject to the Boltzmann response

Phase Matchingt=100μ s≈0.3 τ

T e=20eV ,
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Density and 
potential 
become highly 
correlated

Phase matching is indicative 
of the Boltzmann response

Causes the filament to spin

Fast parallel conduction halts 
charge polarization, so spinning 
can become comparable to 
radial motion 

3D SOL Filaments



Boltzmann response coupled to fast charge conduction drastically reduces 
transport radially

BUT filaments regularly observed 
in the far SOL on all tokamaks

Filament cooling near seperatrix 
required to facilitate interchange 
motion outwards?

3D SOL Filaments



Hot ions introduce a diamagnetic component to the flow

It is non-advective (gyro-viscous cancellation) but can be vortical

This modifies the vorticity such that

Hot Ions



Hot ions introduce a diamagnetic component to the flow

It is non-advective (gyro-viscous cancellation) but can be vortical

This modifies the vorticity such that

Hot Ions

Odd Even



Hot ions provide another symmetry breaking mechanism

Hot Ions

At t=0 a potential 
develops to balance 
diamagnetic vorticity 
and maintain 0 net 
vorticity 
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potential leading to 
symmetry breaking
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Blobs and holes:

Conclusions
Blob/hole velocity scales with δn 
asymmetrically around 0

Impurities can become entrained in the 
flow from holes and get transported 
towards the core
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Conclusions
Blob/hole velocity scales with δn 
asymmetrically around 0

Impurities can become entrained in the flow 
from holes and get transported towards the 
core

SOL geometry disconnects filament from 
sheaths causing it to balloon at the midplane

Parallel gradients break interchange 
symmetry through the Boltzmann response, 
drastically reducing radial motion

Hot ions provide a further source of symmetry 
breaking through the diamagnetic vorticity
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Blobs and holes:

Filaments

Conclusions
Blob/hole velocity scales with δn 
asymmetrically around 0

Impurities can become entrained in the flow 
from holes and get transported towards the 
core

SOL geometry disconnects filament from 
sheaths causing it to balloon at the midplane

Parallel gradients break interchange 
symmetry through the Boltzmann response, 
drastically reducing radial motion

Hot ions provide a further source of symmetry 
breaking through the diamagnetic vorticity

Thanks for listening!

Walkden, Dudson and 
Fishpool, PPCF,50 
(2013) 105005
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